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ABSTRACT 

Data mining is often used to analyze data that is too 
voluminous or complex to analyze by hand. However, 
most data mining algorithms require a fixed-length vector 
representation, in contrast to track data, which is 
naturally multi-dimensional and variable in length. We 
explore several methods for converting flight track data 
to a representation appropriate for data mining, and 
evaluate the performance of these representations in 
both clustering and classification tasks. Our results show 
that relevant features are captured in our 
representations, and describe the tradeoff in 
representational choices. 

INTRODUCTION 

Recognizing key signatures in flight track data is an 
important step towards understanding pilot behavior; 
such a capability could be used for safety and security 
applications. Pilots have been studied in detail in terms 
of cognitive ability and flight deck procedures, but not 
extensively on the level of short-range navigation. Our 
initial interest in recognizing important actions from track 
data stems from research into pilot avoidance of 
convective weather; though the Federal Aviation 
Administration (FAA) often directs flights around poor 
weather, the pilots themselves also have the option to 
deviate from their assigned flight plan to avoid difficult 
weather conditions. From a traffic flow management 
perspective, it would be useful to anticipate which 
weather cells pilots are likely to avoid and which ones 
will they knowingly penetrate. 

Our exploration of track data is influenced by this 
particular application but is not restricted to it. More 
generally, we ask the following questions: 

1. Is it possible to identify a reasonable and 
meaningful set of maneuvers that pilots use 
(where such maneuvers are more complex than 
just banking, ascending and descending)? 

2. If such maneuvers exist, what representation 
would support their identification through 
automated means? 

3. Provided there are such maneuvers and we can 
identify them, are any of these maneuvers 
correlated to meaningful actions in an 
application of interest, such as the avoidance of 
convective weather? 

4. Given positive answers to the previous 
questions, what algorithms would be effective at 
identifying these maneuvers? 

The focus of this paper is primarily on the second 
question, which representations are appropriate. We 
evaluate four candidate representations in both a 
clustering and a classification context. We evaluate the 
results in terms of weather avoidance and recognition of 
holding patterns; results may differ for other tasks with 
very different flight track properties. We conclude with 
discussion of some of the difficulties in using flight track 
data for these particular tasks. 



 

RELATED WORK 

Many of the techniques and representational strategies 
developed for machine vision could be applied to our 
task as well. Significant research has been performed 
using grid-based (i.e., pixel-based) techniques, matching 
the original digital image representation; our vector-
based input data could be transformed into a grid-based 
format in order to use these techniques. However, more 
natural representations of shapes have been developed; 
an extensive list is given by Loncaric (Loncaric, 1998). 
Loncaric categories the approaches along two binary-
valued axes: approaches that represent the shape in a 
single vector versus those that use higher dimensional 
representations; and approaches that only represent the 
boundary of the object versus those that represent 
internal structure. Of these, our approach is the most 
similar to the single vector methods that focus on shape 
boundary. Loncaric also requires that shape 
representation schemes be invariant to rotation, 
translation and scale, but this may not be the right 
choice for our representation; in particular, scale 
invariance is undesirable because pilots will not deviate 
to avoid a storm hundreds of miles away. 

Chain encoding of lines, originally developed by 
Freeman (Freeman & Glass, 1969) and later extended 
by Koplowitz and Touissant (Koplowitz & Toussaint, 
1976), are more directly applicable to our flight track and 
path representation problem. Chain encoding 
approximates a line by translating points on a line to 
points on a grid through a distance function. The 
approximation of the line is created by connecting the 
points in sequence. As the flight track also has a 
temporal sequence, the notion of sequence is appealing; 
furthermore, the chain encoding is translation invariant 
but not scale invariant. However, the chain encoding is 
not rotation invariant, which we currently believe to be a 
desirable property. Also, though the point sequence is 
sufficient to capture the ordering of events, it is not 
sufficient to encode the actual time between events. 

Another interesting approach could be to use gesture 
recognition to identify pilot actions (see (Mitra & 
Acharya, 2007) for a review). Gesture recognition has 
primarily been applied to recognizing human 
movements, but nonetheless can be applied to aircraft 
movement under human control. Like flight track data, 
gestures also have a temporal aspect. However, gesture 
recognition techniques make use of a notion of state, 
which is currently ill defined in our domain. Future 
research may lead to identifiable states that can be 
utilized in gesture recognition; indeed, a broader goal of 
our research would be to identify common pilot 
maneuvers that could be the states of a later gesture 
recognition system.  

Two prior efforts have used clustering techniques to 
identify the impact of convective weather on aviation 
traffic. Song et al. (Song, Wanke, & Greenbaum, 2007) 
used a self-organizing map to identify common flows of 
traffic. In their representation, flight tracks were 
represented in a grid structure based on transitions to 
and from adjoining sectors. Once the flows were 
identified, the potential impact of weather on these traffic 
flows was estimated. Callaham et al. (Callaham et al., 
2001) used an unspecified clustering algorithm to group 
days with similar weather conditions together. A gridding 
procedure was used to transform weather polygons into 
a matrix representation. The weather was also rolled-up 
into four-hour segments. Analysis of the clusters showed 
that intra-cluster days had comparable overall delay 
statistics. 

 
Figure 1. Correspondence between flight plan and 

track. For every point of the flight track (solid line), the 
closest point on the flight plan (dashed line) was identified as 
the corresponding point. In this figure, the corresponding 
points are connected with a dotted line. In most cases, this line 
was perpendicular to the flight plan.  

APPROACH 

We structured our data representation to be consistent 
with a previous study (Chan, Refai, & DeLaura, 2007), 
using the same dataset of approximately 90,000 
instances and flight track subsetting procedure. In that 
study, flight tracks were divided into overlapping fifteen-
minute segments, every five minutes. For example, a 
flight track from 10:00 am to 10:25 am would be 
separated into three overlapping fifteen-minute 
segments: 10:00 am to 10:15 am; 10:05 am to 10:20 am; 
and 10:10 am to 10:25 am. Since segments that were 
less than fifteen minutes in length were ignored, every 
flight segment had the same temporal extent. In the 
original study, these flight tracks were visually correlated 
with the flight plan. 

In our study, such manual correlation was undesirable. 
Instead, a correspondence between the flight plan and 
the flight track was established. Our flight track data was 
divided into one-minute intervals. For every such flight 
track point, we used the closest point on the flight plan 
as the corresponding flight plan point (see Figure 1 for 
an example). This correspondence is a crucial concept 
in our representation, and the basis from which we 
derived all properties between the flight track and flight 
plan. We used three basic properties that were 
translated and combined in various ways in our 
representation: 



 

Distance. For a given flight track point ti and the 
corresponding flight plan point pi, the distance 
distanceSpherical(ti, pi) is the distance between the two 
points in spherical coordinates. 

Heading differential. An instantaneous heading through 
the corresponding points to the next point on the chain is 
computed and their difference is calculated. Let 
heading(x, y) be a function of two point arguments that 
gives the angle between the ray   

€ 

x  y  and due north. For a 
given flight track point ti and the corresponding flight plan 
point pi, calculate the heading differential as 

∆heading(pi, ti)  
  = heading(pi, pi+1) – heading(ti, ti+1) (1) 
 

where ti+1 is the next flight track point in the sequence, 
and pj+1 is the corresponding flight plan point for ti+1. 
Note that ∆heading is positive when the flight track veers 
to the right of flight plan and negative when the flight 
track veers to the left of the flight plan. ∆heading is also 
normalized such that –180 º ≤ ∆heading ≤180º. See 
Figure 2 for an example. 

Progression on flight plan. For the progression on 
flight plan, a distance between successive flight plan 
points can be calculated. Let ti-1, ti be subsequent points 
on the flight track with pi-1, pi the corresponding flight 
plan points, respectively. We define the flight plan 
progression for point ti as 

progression(ti) = distanceSpherical(pi-1, pi). (2) 
 
Furthermore, progression(ti) is defined as positive when 
pi-1 precedes pi on the flight plan sequence, zero when 
pi-1 equals pi, and negative when pi-1 occurs after pi on 
the flight plan sequence. 

 
Figure 2. Translating correspondence to feature. The 

flight track (solid arrows) and flight plan (dashed arrows) from 
Figure 1 expressed as heading differentials. The arrows have 
been placed on three rows solely for increased readability. The 
heading differential is the angle between each pair of vectors. 

We processed and combined these properties to create 
the following representations: 

nonorm: In this representation, each feature is the 
absolute distance between the corresponding flight track 
and flight plan points. 

norm: Like nonorm, this representation uses the 
distance between corresponding points as the only 
features. However, to prevent the overall distance from 
the flight plan from dominating, the minimum distance 
between the corresponding points of the instance was 
subtracted from all the distances. As a logical 
consequence, the value of at least one feature for every 
instance of norm was zero. (norm stands for 
normalized.) 

heading: Every feature in this representation was the 
differential heading between the corresponding points, 
as defined above. 

retro: This representation captured the progression 
along the flight plan by defining every feature to the 
progression on the flight plan for consecutive points as 
defined above. (Retro stands for retrograde, the opposite 
of progression.) 

All our representations share common properties. First, 
they are rotation and translation invariant, but dependent 
on scale. This matched the intuition of the subject matter 
experts we consulted with for our evaluation tasks. Some 
differences with respect to orientation may be observed, 
as wind and weather follow certain patterns, but these 
differences are expected to be slight and therefore 
rotation dependence is not desirable. Likewise, though 
certain positions in the airspace will have different 
tendencies with respect to congestion, flight patterns 
(e.g., at an airport) and weather, the additional 
complication of factoring in position does not appear to 
be worthwhile at present. Scale, on the other hand, is 
important; we are focused on short-term maneuvers, so 
this temporal quality should be preserved. It would not 
make sense to regard a fifteen-minute maneuver as 
identical to a seventy-five minute maneuver for this 
reason. 

Second, each representation translates the four-
dimensional flight track and flight path information (three 
spatial dimensions, plus time) into a single one-
dimensional vector. This is desirable because this sort of 
representation is suitable for many machine learning 
algorithms. Third, our translation is “lossy” in the sense 
that the original flight plan and flight track information 
cannot be reliably recovered from the single one-
dimensional vector representation. Finally, different flight 
track/flight plan combinations will map unto the same 
single vector representation. This is a critical feature for 
the learning algorithms to be able to effectively 
generalize. 

EVALUATION 

We evaluated the suitability of these representations in 
both a clustering and classification context. Some of our 
metrics required a labeling of the data; we used two 



 

different sets of labels on the same dataset (described 
below). The Weka software package (Witten & Frank, 
2005) provided the implementation of all algorithms 
used.  

ALGORTHMS - For clustering, we used the k-means 
clustering algorithm, which iteratively refines clusters by 
putting instances into their closest centroid (MacQueen, 
1967). The number of clusters k was arbitrarily chosen to 
be 100 in our case and purposely set to be not too low: 
initial efforts with k = 20 yielded clusters with too many 
seemingly dissimilar instances grouped together. 
Presumably, high-quality clusters that correctly capture 
an important commonality of cluster members can be 
identified when k is too large, but may not be visible 
when k is too low. On the other hand, evaluation 
becomes more difficult with larger k. We used the 
k-means clustering algorithm instead of other clustering 
algorithms as it is well-known, relatively fast and easy to 
understand. More complex algorithms may yield better 
clusters, but presumably a simple algorithm such as k-
means would be sufficient to evaluate the usefulness of 
the representations. It is worthwhile to note that this 
implementation automatically standardizes the data (i.e., 
transforms the attributes to have zero mean and unit 
variance), thus transforming it before invoking the 
clustering algorithm. 

We used metrics with and without class labels to 
evaluate quality of the clusters. We compared our results 
with the same metric applied to a random clustering of 
the data. To create the random clustering, we created 
clusters of approximately the same size as were 
generated by k-means, but with randomly selected 
cluster members. This was repeated ten times for each 
original set of clusters to account for the variability 
caused by the random selection. Comparison with 
random clusters avoids issues with metrics that are 
affected by the number of clusters or are difficult to 
interpret independently. 

For the classification tasks, we utilized several simple 
algorithms: Decision tables (Kohavi, 1995), which use 
build simple majority-class rules on a subset of 
attributes; decision trees (specifically C4.5 (Quinlan, 
1993)), which splits the data into increasingly smaller 
groups by attribute until a classification can be inferred; 
nearest neighbors (Aha & Kibler, 1991), which classifies 
based on classifications in the local neighborhood (in our 
case, only the closest single neighbor); and a naïve 
Bayes classifier (John & Langley, 1995), which makes a 
probabilistic class prediction under the assumption of 
probabilistic independence. 

METRICS - Recall that k-means attempts to minimize 
the distance from the cluster centroids to each cluster 
member. The sum of these distances for a particular 
cluster can be thought of as the sum of error for that 

particular cluster; the total sum of these errors would be 
the sum of these sums, namely 

TSSE = 

€ 

distancekmeans(x,ci)
x∈Ci

∑
i=1

k

∑  (3) 

 
where ci is the centroid of the ith cluster, x is an element 
of the ith cluster Ci, and distancekmeans is the distance 
measure used by k-means. In our case, this distance 
measure is simply Euclidian distance (as none of our 
features have retained the spherical coordinates of the 
original space). As is commonly done, we use TSSE as 
a measure of how well the k-means algorithm has 
identified reasonable clusters and an indication of how 
naturally the data can be separated into clusters given 
the particular representation. To evaluate whether or not 
those clusters are meaningful for a particular application, 
different metrics must be used. 

We used the standard metrics of purity and entropy to 
evaluate the quality of the clusters with respect to the 
various target attribute labels. Purity with respect to a 
target attribute X is defined as 
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where n is the total number of instances, |Ci| is the 
number of instances in cluster Ci, and mij is the number 
of instances of Ci with label xj ∈ X . Larger values for 
purity represent a better clustering with respect to the 
class. 

Similarly, entropy with respect to a target attribute X is 
defined as  

entropy(X) =
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where n is the total number of instances, |Ci| is the 
number of instances in cluster Ci, |X| is the number of 
labels for target attribute X, and mij is the number of 
instances of Ci with label xj ∈ X. Smaller numbers for 
entropy represent a better clustering with respect to the 
class. 



 

For highly skewed class distributions (i.e., nearly all 
instances are of the same class), however, both the 
purity and entropy measures can give misleadingly 
favorable scores on random clusters. Consider a 
clustering that produces a single cluster (all instances in 
the same cluster) for the Holding target attribute (as 
described below). Such a cluster does not capture 
anything interesting about the domain, but has a purity of 
0.989 and an entropy of 0.087, both which are 
reasonably close to the optimal values of 1 and 0, 
respectively. To compensate, we also calculated 
adjusted versions of purity and entropy that accounted 
for the class distribution by dividing by the frequency of 
the label on the labeled instances (equivalently, multiply 
by its reciprocal). By doing so, each target attribute label 
is given equal weighting in the computation of the 
adjusted metric. Such a metric can be thought of as 
class-specific (evaluating the clusters with respect to the 
classes) rather than instance-specific. 

The re-weighting is pervasive since it is part of any term 
that involves an instance count, leading to a deceptively 
complex-looking formula. We define the adjusted purity, 
purityA, as 

purityA(X) =
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Similarly, we define the adjusted entropy, entropyA, with 
respect to a target attribute X as  

entropyA(X) =
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with the terms defined as above.  

Surprisingly, such a weight-adjusted version of purity 
and entropy has not gained widespread adoption, for we 
could not find a mention of it in the literature, though 
similar approaches do exist. The V-measure (Rosenberg 
& Hirschberg, 2007) is an entropy-based cluster 
evaluation metric that normalizes for the class 
distribution and also incorporates a factor for the number 
of clusters, which we have not done. Weighed-adjusted 
versions of several other popular evaluation metrics 
have also been developed to account for skewed 
distributions (Tan, Steinbach, & Kumar, 2006). 

Finally, we used accuracy as our metric for the 
classification task, defined as follows: 

accuracy(X) =

€ 

Ieq (pi,
i=1

n

∑ ti)

n
 (8) 

 

where n is the total number of instances, pi is the 
predicted class of instance i, ti is the actual class of 
instance i, and Ieq is an indicator function that is 1 when 
its arguments are equal, zero otherwise. 

 Holding Deviation 
Positive instances 1071 187 
Negative instances 163133 60 
Percent Positive 0.7% 75.7% 

Table 1. Number of positive and negative instances for 
each labeling scheme. 

CLASSES- As mentioned previously, our original 
impetus for exploring track data was understanding how 
pilots react to convective weather, specifically, when 
they choose to deviate. Research into this issue is being 
incorporated into the Convective Weather Avoidance 
Model (CWAM) (DeLaura & Evans, 2006; DeLaura, 
Robinson, Pawlak, & Evans, 2008). CWAM uses 
meteorological products such as echo top (a measure of 
the height of the storm) and vertical integrated liquid (a 
measure of precipitation) to calculate the likelihood that a 
pilot will avoid a given region of the storm. The storm is 
divided into polygons at different flight levels, and 
various levels of probability. A limited validation study 
(Chan et al., 2007) showed that the CWAM model was 
reasonably accurate, but the validation method was 
limited by the manual identification of weather-caused 
deviations on a flight-by-flight basis. This validation study 
provided class data for us to test against, and also 
provided our motivation- to provide automated methods 
that generate similar class labels. Instances were 
labeled as Deviation positive if the flight plan intersected 
a CWAM polygon that the flight track avoided through a 
lateral deviation (i.e., by going left or right of the storm, 
but not over or below it). 

However, only a very small subset of the approximately 
160 thousand instances were classified in the CWAM 
validation study (see Table 1). To compensate, we 
created a new dataset that labeled all instances in the 
dataset as either holding patterns or not. This also gave 
us a different application to evaluate our representations 
on. Given the number of instances, we chose to label the 
instances automatically instead of manually. Obviously, 
with an automatic method of creating such labels, it is 
not necessary to use data mining techniques to recreate 
the same labels. Regardless, the ability to recognize 
such features would show some capability of the 



 

representation and data mining algorithm to identify 
salient features in the domain. An instance was labeled 
as Holding positive if at any point, the flight track 
segment included a heading that was offset 360º or 
more from some other heading in the segment. As would 
be expected, a very small percentage of the instances 
displayed holding patterns, as can be seen in Table 1.  

 

 
Figure 3. Total Sum of Squared Error (TSSE) for each 

representation. The mean and standard deviation (stddev) are 
given over all clusters. The R-mean and R-stddev are the mean 
and standard deviation from randomly generated clusters, 
respectively,  created for comparison purposes; they should be 
markedly higher than the non-random clusters. 

 
RESULTS 

CLUSTER EVALUATION- The k-means algorithm was 
run with k = 100 ten times for each representation, each 
time with a different random seed, to account for the 
variation caused by different choices for initial centroids. 
To create the random clusterings, each single clustering 
produced by k-means was randomized by creating 
clusters of approximately the same size, but with 
randomly chosen members. This was repeated ten times 
per k-means clustering, resulting in 100 random 
clusterings for every representation. These random 
clusters have the same structure in terms of the number 
of clusters and their sizes, but presumably capture no 
useful information. By contrast, a clustering that captures 
useful information about the domain would presumably 
produce better results, in terms of our chosen metrics. 

 

 

 
Figure 4. Purity and Entropy cluster metrics. Purity and 

entropy range from zero to one, with large purity values and 
small entropy values indicating good clusters. PurityA and 
EntropyA are the distribution-adjusted metrics, and R 
represents the metrics on the randomly generated clusters. 

 



 

Figure 3 shows the results on the total sum of squared 
error metric (see section 4.1) for each representation. 
Each representation had a much lower TSSE scores 
than the corresponding random clusters. This shows that 
the k-means algorithm is able to pick out some 
commonalities in the data, but does not tell us much 
about the data itself: we would expect to k-means to 
outperform a random clustering on random data (i.e., 
pure noise), as well. However, the Holding 
representation has a noticeably higher TSSE than the 
others, perhaps indicating that clusters are not as 
distinct in this domain. On the other hand, the TSSE was 
very low for the retro clusters, particularly for the 
randomly generated clusters, indicating that this there 
was less relative difference between instances in this 
representation, a potential problem. 

Figure 4 shows the purity and entropy for the clusters on 
both sets of labels, in terms of the original metrics and 
our adjusted versions. For the Holding experiment, the 
predominance of the non-Holding label makes the non-
adjusted metrics difficult to interpret. Using the adjusted 
metrics, it is clear the heading and retro representations 
are doing a reasonable job of separating the classes, 
with heading performing the best. In contrast, the 
distance offset measures of norm and nonorm are not 
separating as well, with nonorm apparently not finding 
much difference between the Holding on non-Holding 
instances. This matches our expectation, as heading 
and retro should have distinctive characteristics for 
holding patterns (consistent angle of change and 
retrogression on the flight plan, respectively). In contrast, 
distance from the flight plan is a subtler signal for 
holding. 

The results for the Deviation labels are not as easily 
interpreted. The metrics show clearly poor results for the 
retro representation, so it is unlikely that meaningful 
separation can be achieved with this representation for 
Deviation. The heading and norm representations are 
able to achieve some separation, but clearly less so than 
was possible with the Holding labels. Though superior to 
retro, it is not clear that the nonorm is a suitable choice 
for the Deviation application. Of course, there is one key 
feature for Deviation in all these representations- the 
location of weather. 

CLASSIFICATION EVALUATION – Though the cluster 
evaluation with Holding relatively promising, our cluster 
evaluation for the Deviation labels failed to establish any 
of our representations as adequate. However, the 
training phase in classification can isolate structure that 
might be less dominant in a clustering context. 
Therefore, we wanted to try to classify according to the 
Deviation label, as was our original goal. We also added 
a simple additional set of weather features: for each 
minute of data of flight track and flight plan, a 
corresponding binary feature was set to one if the point 

was within a CWAM polygon, zero otherwise. This 
resulted in a tripling in the number of features (the 
original set plus weather data for the flight track and 
weather data for the flight plan). 

Figure 5 shows the classification results for various 
algorithmic and representational combinations (see the 
algorithm subsection for a brief description of each 
algorthm). For comparison, an additional algorithm, 
ZeroR, was used. ZeroR does not use any of the 
features, instead returning the majority class. A good 
representation/algorithm combination should outperform 
ZeroR. 

Unfortunately, none of the algorithm/representation pairs 
performed particularly well on the full dataset when 
compared to the ZeroR baseline. The addition of the 
weather information appears to be important, indeed, all 
algorithms outperformed ZeroR when using weather 
information only, though sometimes only slightly. 
Overall, the simple DecisionTable performed best, while 
the Naïve Bayes classifier had generally unacceptable 
performance. For the most part, it is not clear that the 
flight track/flight plan representations add anything 
useful when evaluated on the full dataset, though the 
decision tree and decision table had somewhat better 
results when the norm or heading representations were 
coupled with weather information than when only 
weather was used. 

Further examination of the Deviation labels showed that 
they did not fit our expectations. We had expected that 
every instance labeled should have a flight plan 
intersecting weather, according to the description of the 
original study; in particular, according to the stated 
conditions a deviation could only be defined when the 
flight plan intersected weather. (Situations were pilots 
avoided weather off of their flight plan were not included 
in the original study). However, in an overwhelming 
number of instances (139 out of 247), the flight plan did 
not intersect a CWAM polygon. A much smaller number 
of instances violated other assumptions, such as a flight 
track labeled as intersecting weather when it did not, and 
flights labeled as deviating that did not drift more than 
1.5 nautical miles from their flight plan. 

We would not expect our representations to be able to 
correctly classify instances when our assumptions about 
the data are violated. To test this theory, we divided the 
labeled data into two subsets: one that matched the 
assumptions above and one that did not. Running the 
experiments again, we found that no learning occurred 
on the subset that violated our assumptions above, as 
we had expected. Unfortunately, only 100 of the original 
247 instances fit our assumptions, and of these 63 were 
labeled positive for Deviation. The small size is 
problematic because training is generally less effective 
on small datasets. 
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Figure 5. Classification on all labeled instances for Deviation. The w/wx variants had additional features showing if the 

corresponding flight track and flight plan points were within a CWAM polygon. The onlywx representation had only weather 
information and no other feature. 
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Figure 6. Classification on Deviation subset where flight plan intersects weather. The w/wx variants had additional features 

showing if the corresponding flight track and flight plan points were within a CWAM polygon. The onlywx representation had only 
weather information and no other feature.  

Figure 6 shows the classification results on the subset of 
data that matched our previously stated assumptions. 
Consistent with our earlier findings, the retro 
representation does not seem to be a good choice. 
Though the weather features appear to be important, the 
difference is not as clear as on the full dataset. Indeed, 
the best classification rate overall came on the norm 
representation without weather, and for the heading and 
nonorm representations, some algorithm on a 
representation without weather performed comparably to 
the best performer with weather. Given the small size of 

the dataset, small percentage differences are not 
presumed to be significant, and perhaps more 
importantly, some of the relative rankings of 
representation/algorithm combinations could change 
with more training data.  

DISCUSSION 

Of the two sets of labels, the tasks associated with the 
Holding labels were better suited to our representations. 
Even though we did not use these labels in our 



 

classification task, one reason Holding may have been 
easier to identify is because the dataset was fully 
labeled. Initial experiments showed that a fairly large 
number of clusters were needed to separate the data 
into reasonable-looking sets. However, this may have 
worked against the Deviation related tasks, since fewer 
labels meant that even random clusters would do a good 
job of separating the data (since fewer instances of any 
label would be likely to share a cluster). Also, the 
definition we used for Holding was simple and concise. 
In contrast, the Deviation labels were made by hand and 
had no concise definition. Though such manual labels 
are presumably of higher quality than a simple automatic 
definition, differences in judgment mean that they may 
not be globally consistent (same for all persons) or even 
locally consistent (instances labeled consistently by the 
same person). 

Even with the complete set of labels for the Deviation 
task, the small size of the dataset is challenging. There 
is a relationship between the number of features and the 
amount of data required to adequately learn, and for 
most if not all of our representations, the small dataset 
size hurt performance. In nearly all cases, a condition 
known as overfitting occurred, where the classification 
performance on the training set (which we did not report 
here) far exceeds that on the testing set. In such cases, 
the learning algorithm mistakes random differences 
between instances for meaningful ones and actually 
creates a worse classifier. Another issue is that most 
algorithms have some parameters that should be tuned, 
but again this was difficult with such a small dataset. A 
larger dataset or eliminating or combining features can 
address these issues. 

However, the biggest concern from an experimental 
standpoint was the apparent mismatch between our 
expectation and the actual Deviation labels. A small 
number of disagreements are to be expected, either from 
mis-labeling or from differences of opinion on difficult 
cases, but the number of flight plans erroneously marked 
as intersecting weather far exceeded a tolerable number. 
Visual analysis of the flight plans showed close 
agreement with the plots of the original study and were 
mostly unambiguously clear of weather, ruling out the 
possibility of different flight plan interpretations or a 
prevalence of difficult to judge cases. When limited to the 
fifteen minute window, it is unlikely that we could have 
done better classifying for Deviation by hand. 

When we looked beyond the fifteen minute time window, 
however, it became clear that many of the flight plans 
did indeed intersect weather at some point. In the subset 
of cases we examined, we observed two ways in which 
the data was labeled other than advertised: either the 
deviation occurred in a later fifteen minute window than 
marked (which would results in two incorrect labels, one 
for the early mis-labeling and one for the later missed 

label); or the deviation occurred during a time window 
greater than fifteen minutes (including both the initial 
deviation and the time the flight plan intersected 
weather). Neither one of these cases would have had 
any adverse effect on the original study (as it was not 
sensitive to such alterations), but was a problem with our 
re-purposing of the data.  

In any case, when our assumptions for the data are met, 
we were able to classify the instances with a high degree 
of accuracy. At the very least, then, there is a certain 
subset of the data that can be automatically identified 
and reasonably classified. The fact that this subset can 
be classified well without using information about the 
weather indicates that the weather interpretation is 
probably not an issue. 

Though it seems clear that our representations are 
capturing useful information, creating a system to 
classify deviations is not yet feasible. A subject matter 
expert involved in the original study has tentatively 
validated our analysis of the discrepancies of the 
Deviation labels, but a more extensive examination is 
warranted, as is a larger set of correct labels. Also, our 
sample of labels is biased by the instances the analysts 
chose to label. The accuracy on instances outside of this 
subset should be evaluated. Finally, even if these issues 
are satisfactorily resolved, there is the near certainty of 
less than perfect classification accuracy. This could be 
handled in one of two ways. As the first choice, if the 
classifier can be tuned so that it classifies correctly in a 
well-defined majority of cases, with the ambiguous 
minority checked by hand. For instance, if it always 
correctly classifies non-deviations, but occasionally 
misclassifies deviations, the much smaller set of 
instances classified as deviations could be checked by 
hand. Alternatively, within the original CWAM validation 
study, the classification error can be interpreted as an 
error bound in the study. 

Even without these improvements, the ability to correctly 
identify deviations in a subset of the data may lead to 
new insight on when and how pilots deviate when 
encountering convective weather. 

CONCLUSION 

The focus of our study is to evaluate several candidate 
representations for data mining of flight track and flight 
plan information. We evaluated four representations on 
clustering and classification tasks, and used two different 
sets of labels. Which representation performed best was 
not always consistent for all tasks. However, the heading 
representation was perhaps the most consistently 
beneficial representation, followed by norm. In contrast, 
the retro representation did consistently poorly. Between 
nonorm and norm, nonorm rarely provided better results 
than norm but often did worse, so relative distance to 



 

flight plan is probably more important than absolute 
distance. 

Further examination of the flight track data shows that it 
is fairly noisy, in the sense that the positional information 
for the aircraft is not very precise in some cases. This 
would manifest itself in several ways; aircraft rapidly 
accelerating and then coming to a near-stop; aircraft 
occupying the same point for consecutive minutes 
(freezing in midair); aircraft doing an immediate 180 and 
then back again (or similarly impossible maneuvers); or 
in extreme cases, teleporting backwards to repeat some 
large portion of the flight plan, only to teleport further 
ahead. By no means is it unusual to encounter noise in 
data mining, and the flight track noise is not necessarily 
worse than usual. However, the type of noise does not 
necessarily affect all our representational choices 
equally, in particular retro would be more affected by 
such noise than norm or nonorm. Without correcting for 
noise (which we did not do), this may be enough reason 
to prefer one representation over another. 
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